107 research outputs found

    Differential effects of apolipoprotein E isoforms on phosphorylation at specific sites on tau by glycogen synthase kinase-3β identified by nano-electrospray mass spectrometry

    Get PDF
    AbstractPreviously published data have shown an allele-specific variation in the in vitro binding of apolipoprotein E (apoE) to tau, which prompted the hypothesis that apoE binding may protect tau from phosphorylation, apoE3 being more efficient than apoE4. We have, therefore, investigated the effects of apoE on tau phosphorylation in vitro by the proline-directed kinase, glycogen synthase kinase (GSK)-3β. The phosphopeptide maps of tau alone, of tau with apoE3 and of tau with apoE4 were very similar. When apoE2 was present a further four spots were evident. Additionally, of the 15 peptides phosphorylated in the presence or absence of apoE, subtle differences, some isoform-specific, in the relative amounts of phosphorylation were observed

    Circulating sclerostin levels are positively related to coronary artery disease severity and related risk factors

    Get PDF
    Romosozumab is a newly available treatment for osteoporosis acting by sclerostin inhibition. Its cardiovascular safety has been questioned after finding excess cardiovascular disease (CVD)‐related events in a pivotal phase 3 trial. Previous studies of relationships between circulating sclerostin levels and CVD and associated risk factors have yielded conflicting findings, likely reflecting small numbers and selected patient groups. We aimed to characterize relationships between sclerostin and CVD and related risk factors in more detail by examining these in two large cohorts, Ludwigshafen Risk and Cardiovascular Health study (LURIC; 34% female, mean age 63.0 years) and Avon Longitudinal Study of Parents and Children study (ALSPAC) mothers (mean age 48.1 years). Together these provided 5069 participants with complete data. Relationships between sclerostin and CVD risk factors were meta‐analyzed, adjusted for age, sex (LURIC), body mass index, smoking, social deprivation, and ethnicity (ALSPAC). Higher sclerostin levels were associated with higher risk of diabetes mellitus (DM) (odds ratio [OR] = 1.25; 95% confidence interval [CI] 1.12, 1.37), risk of elevated fasting glucose (OR 1.15; CI 1.04, 1.26), and triglyceride levels (β 0.03; CI 0.00, 0.06). Conversely, higher sclerostin was associated with lower estimated glomerular filtration rate (eGFR) (β −0.20; CI −0.38, −0.02), HDL cholesterol (β −0.05; CI −0.10, −0.01), and apolipoprotein A‐I (β −0.05; CI −0.08, −0.02) (difference in mean SD per SD increase in sclerostin, with 95% CI). In LURIC, higher sclerostin was associated with an increased risk of death from cardiac disease during follow‐up (hazard ratio [HR] = 1.13; 1.03, 1.23) and with severity of coronary artery disease on angiogram as reflected by Friesinger score (0.05; 0.01, 0.09). Associations with cardiac mortality and coronary artery severity were partially attenuated after adjustment for risk factors potentially related to sclerostin, namely LDL and HDL cholesterol, log triglycerides, DM, hypertension, eGFR, and apolipoprotein A‐I. Contrary to trial evidence suggesting sclerostin inhibition leads to an increased risk of CVD, sclerostin levels appear to be positively associated with coronary artery disease severity and mortality, partly explained by a relationship between higher sclerostin levels and major CVD risk factors. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)

    Independent association of low serum 25-hydroxyvitamin d and 1,25-dihydroxyvitamin d levels with allcause and cardiovascular mortality. Arch Intern Med.

    Get PDF
    Background: In cross-sectional studies, low serum levels of 25-hydroxyvitamin D are associated with higher prevalence of cardiovascular risk factors and disease. This study aimed to determine whether endogenous 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels are related to all-cause and cardiovascular mortality

    Effect of Galectin 3 on Aldosterone-Associated Risk of Cardiovascular Mortality in Patients Undergoing Coronary Angiography

    Get PDF
    Recent experimental studies have suggested that galectin-3 has an interaction with aldosterone, and modifies its adverse effects. We therefore aimed to elucidate whether the relationship between plasma aldosterone concentrations (PACs) and long-term fatal cardiovascular (CV) events would depend on plasma galectin-3 levels. A total of 2,457 patients (median age: 63.5 [interquartile range (IQR) = 56.3 to 70.6] years, 30.1% women) from the LUdwigshafen RIsk and Cardiovascular Health study, with a median follow-up of 9.9 (IQR = 8.5 to 10.7) years, were included. We tested the interaction between aldosterone and galectin-3 for CV-mortality using a multivariate Cox proportional hazard model, reporting hazard ratios (HRs) with 95% confidence intervals (95%CIs). Adjustments for multiple CV risk factors as well as medication use were included. Mean PAC was 79.0 (IQR = 48.0 to 124.0) pg/ml and there were 558 (16.8%) CV deaths. There was a significant interaction between PAC and galectin-3 (p = 0.021). When stratifying patients by the median galectin-3, there was a significant association between aldosterone and CV-mortality for those above (HR per 1 standard deviation = 1.14; 95%CI [1.01 to 1.30], p = 0.023), but not below the cut-off value (HR per 1 standard deviation = 1.00; 95%CI [0.87 to 1.15], p = 0.185). In conclusion, the current study demonstrates for the first time a modifying effect of galectin-3 on the association between aldosterone and CV-mortality risk in humans. These findings indicate that galectin-3 is an intermediate between aldosterone and adverse outcomes

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets

    Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci

    Get PDF
    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: Rs13422522 (NYAP2; P = 8.87 × 10-11), rs12454712 (BCL2; P = 2.7 × 10-8), and rs10506418 (FAM19A2; P = 1.9 × 10-8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci

    Mendelian Randomization analysis reveals a causal influence of circulating sclerostin levels on bone mineral density and fractures

    Get PDF
    In bone, sclerostin is mainly osteocyte-derived and plays an important local role in adaptive responses to mechanical loading. Whether circulating levels of sclerostin also play a functional role is currently unclear, which we aimed to examine by two-sample Mendelian randomization (MR). A genetic instrument for circulating sclerostin, derived from a genomewide association study (GWAS) meta-analysis of serum sclerostin in 10,584 European-descent individuals, was examined in relation to femoral neck bone mineral density (BMD; n = 32,744) in GEFOS and estimated bone mineral density (eBMD) by heel ultrasound (n = 426,824) and fracture risk (n = 426,795) in UK Biobank. Our GWAS identified two novel serum sclerostin loci, B4GALNT3 (standard deviation [SD]) change in sclerostin per A allele (β = 0.20, p = 4.6 × 10-49 ) and GALNT1 (β  = 0.11 per G allele, p = 4.4 × 10-11 ). B4GALNT3 is an N-acetyl-galactosaminyltransferase, adding a terminal LacdiNAc disaccharide to target glycocoproteins, found to be predominantly expressed in kidney, whereas GALNT1 is an enzyme causing mucin-type O-linked glycosylation. Using these two single-nucleotide polymorphisms (SNPs) as genetic instruments, MR revealed an inverse causal relationship between serum sclerostin and femoral neck BMD (β = -0.12, 95% confidence interval [CI] -0.20 to -0.05) and eBMD (β = -0.12, 95% CI -0.14 to -0.10), and a positive relationship with fracture risk (β = 0.11, 95% CI 0.01 to 0.21). Colocalization analysis demonstrated common genetic signals within the B4GALNT3 locus for higher sclerostin, lower eBMD, and greater B4GALNT3 expression in arterial tissue (probability &gt;99%). Our findings suggest that higher sclerostin levels are causally related to lower BMD and greater fracture risk. Hence, strategies for reducing circulating sclerostin, for example by targeting glycosylation enzymes as suggested by our GWAS results, may prove valuable in treating osteoporosis. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc
    corecore